If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2+20z+25=0
a = 4; b = 20; c = +25;
Δ = b2-4ac
Δ = 202-4·4·25
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$z=\frac{-b}{2a}=\frac{-20}{8}=-2+1/2$
| 12.6=b+4.1 | | 9n^2+48n+64=0 | | z^2-18z-19=0 | | 324t^2+36t+1=0 | | 20v^2-41v+2=0 | | 42/36=x | | 8.9y+2.65=3,8(2y-7) | | 2x^2=36=0 | | x^2+5-35=3x | | 4Ix=3I=20 | | x+73(x-11)=180 | | 5u^2+46u+9=0 | | 5x+4/x+6=0 | | 5d^2+11d+6=0 | | 105+9.50r=105+14.75 | | 2(3x-8=4(1/4x-8) | | h^2+18h+17=0 | | 3^(0.2x)=2.4 | | 105+9.50r=14.75 | | 3p^2+46p+15=0 | | 2n=15/4=10-9/4 | | -4/3x-1/2=2(1/6x=-4) | | 4u^2+49u+12=0 | | 8(2x+1)+4(2x+3)=44 | | n+(7)=-19 | | 6-⅓x=-1 | | n-(9)=-26 | | 8h^2+33h+4=0 | | 12x^2-2x-7=0 | | 3u^2-20u+12=0 | | 3(n+4)=24+2n | | .5x+6=16 |